
150 Genome Informatics 16(1): 150–158 (2005)

Comprehensive Analysis and Prediction of Synthetic

Lethality Using Subcellular Locations

Takuji Yamada1 Shuichi Kawashima2 Hiroshi Mamitsuka1

takuji@kuicr.kyoto-u.ac.jp shuichi@hgc.jp mami@kuicr.kyoto-u.ac.jp

Susumu Goto1 Minoru Kanehisa1

goto@kuicr.kyoto-u.ac.jp kanehisa@kuicr.kyoto-u.ac.jp

1 Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho,
Uji, Kyoto 611-0011, Japan

2 Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1,
Shirokanedai, Minato-ku, Tokyo 108-8639, Japan

Abstract

The lethality of a gene is a fundamental and representative measure for understanding the
function of a gene and its associated bio-systems. Recently, many research groups have started
focusing on the concept of synthetic lethality. The synthetic lethality between genes is defined by
the combination of mutations in two genes causing cell death. Here, we confirm that synthetic
lethality and cellular location have close relationships among the Saccharomyces cerevisiae genes.
Furthermore, we attempt the prediction of candidate gene pairs with synthetic lethality. The
prediction is based on the hierarchical aspect model (HAM) which learns from a data set of cellular
location to estimate a likelihood value indicating the synthetic lethality between genes.
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1 Introduction

In the post-genomic era, analyses about relationships among genes or proteins have become popular
topics. There are qualitatively different types of relationships for the same genes and/or proteins (e.g.
sequence similarity, protein-protein physical interaction, etc). The whole of these relationships form a
complex network, which represents the underlying structure of bio-systems. Some research groups have
developed high through-put experimental tests to obtain comprehensive data of these relationships [4,
7, 13]. Recently, there have been integrative analyses of these multiple relationships. These approaches
are considered effective methods to solve unknown functions of genes or proteins [2, 11]. Furthermore,
some integrative methods have been extended for the prediction of the relationships of elements using
statistical or mathematical methods [15]. Here, we applied such an integrative method with protein
co-localization, synthetic lethality of genes, and protein relationships in the metabolic and regulatory
pathways.

Protein co-localization is one of the representative protein features with a long history. Recently,
Huh et al. [3] analyzed the localization of proteins comprehensively, and they also investigated the
co-localization of protein pairs. One of the most important protein roles is catalyzing chemical re-
actions. A whole set of reactions in a particular species is defined as a metabolic pathway. On the
other hand, a regulatory pathway consists of a chain of physical protein-protein interactions, which
play a role of information processing. These pathways are comprehensive representations of the rela-
tionships between proteins or compounds [5, 6]. The synthetic lethality between genes is defined by
the combination of mutations in two genes causing cell death. This has also been studied for a long
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time, and lately one group developed high-throughput analysis to investigate the synthetic lethality
between genes, so large scale data sets could be obtained [10, 12].

In this analysis, we address the synthetic lethality between genes in Saccharomyces cerevisiae and
investigate the effects of other relationships (protein co-localization, relationships in the metabolic
pathway) to synthetic lethality. We propose that there exists a high correlation between synthetic
lethality and protein co-localization. Using high correlation as a measure, we attempted the prediction
of synthetic lethality for gene pairs. The prediction method is based on the Hierarchical Aspect Model
(HAM) developed by Mamitsuka [8], which estimates the likelihood of query gene pairs. This method
takes as input a dataset for learning, which are categorical data of entries and entry pairs with
particular features. In this paper, our method takes gene sets with their subcellular locations and
gene pairs with synthetic lethality as the learning data sets. We successfully obtained some candidate
gene pairs with synthetic lethality. We confirmed this by comparing our results with random data
using jack-knife cross-validation. The direct relevance of this prediction is to reduce the time and cost
of comprehensive experimental tests for synthetically lethal gene pairs.

We did not utilize the relationships between synthetic lethality and the pathway maps for the
prediction because this data is currently not available over all pathways. However, a few of these
relationships could be observed in some of the regulatory pathways, such as the MAPK signaling
pathway. Some metabolic pathways are also related to the regulatory pathways through synthetically
lethal relationships. Our results suggest that the gene relationships affect synthetic lethality between
regulatory pathways more than between metabolic pathways. However, the number of regulatory
pathways is few compared with metabolic pathways. In the future, our method may take pathways
as input for prediction with the improvement of the data set used.

2 Data Set

2.1 Synthetically Lethal Gene Pairs

We used the 6234 S. cerevisiae proteins obtained from SGD (Saccharomyces Genome Database) [1],
and 2374 gene pairs with synthetic lethality (1140 genes) were extracted from the Tong and Ozier’s
data [10, 12].

2.2 Subcellular Location of Proteins

The sub cellular locations of the proteins in the S. cerevisiae genome were extracted from the MIPS
database [9]. Although this database stores information of the subcellular locations of proteins from
the literature, we extracted the data published by a single group, Huh et al. [3], to obtain data of
consistent quality. There are 22 subcellular locations, and the locations for 6077 proteins are defined.
Furthermore, for each protein pair, subcellular location pairs are also defined. We constructed the
localization pairs of all against all protein pairs.

2.3 Pathway Map from KEGG/PATHWAY

Some proteins catalyze chemical reactions as enzymes, and also play a role in a part of the signal trans-
duction cascade. The KEGG/PATHWAY database contains these reactions and proteins from fully
sequenced genomes [5]. Over 100 pathway maps are contained in the database, and we extracted the
S. cerevisiae proteins from each pathway map. Totally, 76 pathway maps contained 891 S. cerevisiae
proteins. Each protein is included in particular pathway maps, so pathway map pairs are defined in
each protein pair, as was done for subcellular location.
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Figure 1: The similarity matrix of subcellular locations. Each cell represents the p-value indicating the
synthetic lethality of the location pair. The p-value is calculated from the distribution of the SL-score.
The order of the subcellular location obeys the result of the hierarchical clustering using the p-value.

3 Method

3.1 Synthetic Lethality and Subcellular Localization

Each protein pair corresponds to a number of sub cellular location pairs, so each subcellular location
pair also has information of protein pairs. We constructed a similarity matrix of the subcellular
locations. Each cell in this matrix corresponds to a score indicating the relationship of subcellular
location pairs to synthetic lethality. This score, which we call the SL-score, is defined by Sn/Tn (Sn:
the number of synthetically lethal gene pairs in a particular location pair, Tn: the number of gene
pairs in the subcellular location pair). The number of proteins depends on each subcellular location,
so the score is normalized for the bias. We inferred the p-value from the distribution of this score.

Table 1: The list of cellular location pairs which have high SL-score described in the Method section.
The first and second columns represent specific subcellular locations (L1, L2), and the third and fourth
columns represent Sn and Tn. The fifth and the sixth column represent SL-score and SL-ratio (see
Section 3.1). This table was sorted by SL-score, and only the top 20 are shown. Shaded rows represent
pairs of the same subcellular location.
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Figure 2: The distribution of the log-likelihood.

3.2 Prediction of Synthetically Lethal Protein Pairs Using HAM

Hierarchical Aspect Model (HAM) is a prediction model for co-occurrence data [8]. It is designed to
estimate the likelihood of a certain relationship using categorical data. In this model, entries with
categorical data and pairs of these entries are required as the learning dataset. Given a test set
(a particular entry pair) to HAM after the learning procedure is completed, the likelihood will be
returned according to the categories of the entry pair.

In this paper, the entries and their categories correspond to proteins and their subcellular locations
respectively. Furthermore, entry pairs for the learning data are protein pairs which are encoded in
gene pairs with synthetic lethality. As a test set to estimate the likelihood, we prepared two kinds of
protein pairs. One is synthetically lethal gene pairs. In fact, this data is utilized for learning data set,
so we applied jack knife cross validation for each pair. The other is the all against all S. cerevisiae
gene pairs.

3.3 Synthetic Lethality and Pathway Map Category

We constructed a similarity matrix of the pathway map categories similarly to the previous subcellular
locations matrix. However, only a few number of proteins (265 proteins) on the pathway maps related
to synthetic lethality, so the scores for each pathway map pair are the number of protein pairs which
is encoded by the gene pairs with synthetic lethality.

4 Results

4.1 Synthetically Lethal and Subcellular Localization

Figure 1 illustrates the similarity matrix of subcellular locations described in Section 3.1. The darkness
of the color in each cell corresponds to the p-value inferred from the distribution of the scores. The
darker the color, the higher the intensity of the synthetic lethality between the subcellular locations.

Generally, the same subcellular location pairs tend to have relatively high scores, which means
that the protein pairs with synthetic lethality tend to be located in the same compartment in the
cell. On the other hand, some proteins in the ACTIN and the MICROTUBLE compartments have
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Figure 3: The similarity matrix of pathway maps. Each cell represents to the number of synthetic
lethal gene pairs.

strong synthetically lethal relationships with proteins located in other cellular components. Subcellular
location pairs with particularly high scores are indicated in Table 1. Rows representing pairs of the
same subcellular location are shaded. The second to the last column is the SL-score, as described
in Section 3.1. This score also clearly shows that pairs in the same location have higher score; pairs
within the ER TO GOLGI, MICROTUBULE and ACTIN compartments are especially high.

The ratio of the total number of synthetic lethal gene pairs against the total number of gene pairs
is about 1/e−5. Comparing this ratio with the SL-score in column 5, most of the location pairs are very
specialized. This is indicated by values in column 6. For example, ER TO GOLGI - ER TO GOLGI is
over 1000 times more specialized. This result obviously illustrates the relationship between subcellular
locations and synthetic lethality.

4.2 Prediction of Synthetically Lethal Pairs

Figure 2 shows the likelihood distribution. Black squares correspond to the likelihoods from the
results of the jack knife test of each synthetically lethal gene pair, and white squares correspond to
the likelihood from the same number of gene pairs extracted at random from all against all gene pairs.

The likelihoods of the synthetically lethal gene pairs are relatively high compared with randomized
pairs. This obvious difference between the two distributions indicates clearly that subcellular location
is related to the synthetic lethality between genes.

From the likelihoods of all against all gene pairs, we extracted the top 500 with the highest
likelihoods. In this list of gene pairs, some particular genes were observed very frequently. Table 2
shows these frequently appearing genes. These genes are candidates for causing synthetic lethality.

Although high though-put methods for deciding synthetic lethal gene pair has been developed,
much cost and time must be spent for every gene pair. Thus, our candidate prediction method is very
helpful for inferring the most interesting genes with synthetic lethality.
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Table 2: The list of the pathway map pairs which includes much synthetic lethal pairs. Prefix number
in the first, and second column is the index of the pathway map in the KEGG/PATHWAY database.
Third column is the number of synthetic lethal pairs between these maps. This is sorted by the third
column, and only the top 30 was shown. Shaded rows represent pairs of the same subcellular location.

4.3 Synthetic Lethal and Pathway Map Category

Figure 3 illustrates the similarity matrix of the pathway maps described in Section 3.3. The scores in
each cell of the matrix are the number of synthetic lethal gene pairs in each pathway map pair. The
majority of the pathway map pairs did not include synthetic lethal gene pairs, so this matrix is only
a subset of all possible pairs. Table 2 shows the list of pathway map pairs including many synthetic
lethal gene pairs. Shaded lines correspond to the same pathway map pairs.

Gene pairs with synthetic lethality tend to belong to the same pathway map. However, several
maps, such as Cell cycle and the MAPK signaling pathway, had high scores against many different
maps. There are some maps which have particularly high scores in general. This tendency is similar
to subcellular location. These higher-scoring maps tend to be those in the regulatory system.

We did not utilize this pathway data as the learning data set for prediction due to the small
number of S. cerevisiae genes assigned to the pathways (265 entries). However, we claim that there
exist relationships between synthetic lethality and the pathway maps based on the bias found in this
matrix.
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5 Discussion

Figures 1 and 2 showed that there are many synthetically lethal relationships in the same subcellular
locations. The synthetic lethality of the genes seems to be attributable to the co-localizations of the
proteins. However, we claim that there is an underlying function between these relationships which
is related to the relative positions of the proteins in the cell. The construction of a complex is one
possible case because proteins constructing a complex are necessarily located in the same subcellular
location. YLR208W and YHR098C are one example of a synthetically lethal gene pair which encodes
proteins located in ER TO GOLGI. These proteins are part of the COPII complex. Likewise, some
synthetically lethal protein pairs in ACTIN are often a part of either the ARP3 or the RVS complex.

There were many gene pairs that construct complexes with synthetic lethality. This result indicates
that construction of the complex is one of the dominant factors that cause synthetic lethality. However,
to understand the details of this phenomenon, more investigation of such things as conformational
changes is required. Furthermore, some binding proteins and their targets were also observed in
synthetically lethal protein pairs. In particular, proteins containing the SH3-domain and purine-
binding domain appeared frequently. Comprehensive analysis of domain distribution in the proteins
related to synthetic lethality may be one research topic to gain further understanding of synthetic
lethality. Based on the above, protein-protein physical interaction data may be useful as a learning
data set for prediction.

Some regulatory pathways have strong relationships with synthetic lethality. The regulatory path-
ways are composed of the signaling and information processing pathways, which contain more direct
interactions compared with metabolic pathways. As mentioned earlier, protein-protein physical inter-
actions may contribute to synthetic lethality. Furthermore, the synthetic lethality of some gene pairs
may connect the regulatory and metabolic pathways. These gene relationships have the possibility
to clarify the involvement between regulatory and metabolic pathways. Unfortunately, the synthetic
lethality of the genes in the pathway maps was in the minority. As described in Section 4.3, one reason
may be the number of genes assigned in the pathway. The total number of S. cerevisiae genes in the
pathway is 891, of which 265 are related by synthetic lethality. On the contrary, we utilized over 6000
entries for protein subcellular locations. 189 of these 265 genes are related to the genes assigned in
the pathways. The other 76 genes related to these 265 genes are outside of the pathways. This means
that these genes have critical unknown relationships with genes outside of the pathways. These types
of synthetically lethal relationships are one of the cross-links from the pathways to other systems.
Therefore, this may be a clue for uncovering more complex systems that include the pathways.

The above indicates that there are various factors that induce synthetic lethality. The identification
of these other factors is the next step. The information of protein physical interactions and of domains
are dominant features. Our prediction method, HAM, can utilize multiple categorical data as an
integrated learning data set. In fact, although we used only the information of subcellular locations in
the current work, the accuracy of HAM can be improved by adding other factors of synthetic lethality.

6 Conclusion

We investigated the relationship between synthetic lethality and subcellular locations of proteins. We
confirm their close relationship because gene pairs with synthetic lethality were located in particular
subcellular locations. One factor for the close relationship may be direct protein-protein interactions.
Furthermore, we attempted computational prediction, which is based on HAM, of synthetically lethal
gene pairs. Taking synthetically lethal gene pair and their subcellular locations as learning data sets,
HAM estimates likelihood of synthetic lethality of the gene pair. We can obtain some gene pairs with
high likelihood for synthetic lethality. This prediction of candidates enables the reduction of time and
costs of experimental tests. In the future, we will improve the prediction method by investigating
some additional characteristic features which may be related to synthetic lethality.
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