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Amino acid indices are useful tools in bioinformatics. With the appearance of novel theory and 
technology, and the rapid increase of experimental data, building new indices to cope with new or 
unsolved old problems is still necessary. In this study, residue networks are constructed from the 
PDB structures of 640 representative proteins based on the distance between Cα atoms with an 8 Å 
cutoff. All these networks show typical small world features. New amino acid indices, termed 
relative connectivity, clustering coefficient, closeness and betweenness, are derived from the 
corresponding topological parameters of amino acids in the residue networks. The 4 new network 
based indices are closely clustered together and related to hydrophobicity and β propensity. When 
compared with related amino acid indices, the new indices show better or comparable performance 
in protein surface residue prediction. Relative connectivity is the best index and can reach a useful 
performance with an area under the curve about 0.75. It indicates that the network property based 
amino acid indices can be useful complements to the existing physicochemical property based amino 
acid indices. 

       Keywords: amino acid index; residue network; connectivity; closeness; betweenness; clustering  
coefficient. 

1. Introduction 

Any given property of amino acids can be represented by a set of 20 numerical values, 
usually called a propensity scale or amino acid index [1-3]. As scales of different 
physicochemical and biochemical properties, amino acid indices have been widely used 
in various bioinformatics studies, such as predicting protein secondary structures [4], 
transmembrane sequences [5], surface [6, 7] and linear B cell epitopes [8-10]. Sometimes, 
however, the existing indices perform poorly [9], indicating that better methods or new 
amino acid indices are needed. With the appearance of novel theory and technology, and 
the rapid increase of experimental data, it is necessary to revise old amino acid indices, 
and build new ones. 

Recently, graph and network theory have become a paradigm for research on 
complex biological systems [11-16]. Proteins have also been studied intensively as 



                                   New Amino Acid Indices Based on Residue Network Topology  153          
 

 

networks formed by amino acid residues and their interactions [17-29]. To avoid 
confusion with protein-protein interaction networks, these networks are usually called 
residue networks or amino acid networks. In residue networks, nodes stand for amino 
acids and two nodes are linked together when the distance between the two nodes is 
shorter than a given threshold (see Fig. 1). Though constructed with various distance 
cutoffs and based on different residues or atoms, all residue networks studied so far have 
small world features [17-29]. Nearly all these networks have a normal degree distribution 
rather than a scale-free power-law degree distribution; though the latter is often seen in 
other biological networks [12, 15]. It is also very interesting that topological parameters 
of residue networks have shown relationships to protein folding [17-19], dynamics [23], 
stability [25], functional sites and residues [21, 22]. Therefore, topological properties of 
amino acids in residue networks may play an important role in exploring protein 
structure and function. 
 

 
Fig 1. Residue network of crambin. Constructed from the PDB structure 1CRN, based on the distance between 
Cα atoms with an 8 Å cutoff and visualized with the Pajek program [30]. 

As reported previously, our group began to construct and maintain a database of 
amino acid indices almost 20 years ago [1-3]. However, most existing amino acid indices, 
if not all, are derived from physicochemical properties of amino acids, such as size, 
charge, polarity and hydrophobicity. The topological properties of amino acids in the 
residue networks have not been adequately studied and included into the AAindex 
database [3]. 

In this study, we built new amino acid indices based on the local and global topology 
of residue networks. We also studied the relation between these topological properties 
and the physicochemical properties of amino acids through cluster analysis with existing 
indices in the AAindex database [3]. The application of these new indices is 
demonstrated in protein surface residue prediction. 
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2. Methods and Data Sets 

2.1. Constructing residue networks 

A set of 640 representative proteins were selected from the PDB release #2006_08_20 
through the web interface of the PDB-REPRDB database [31]. All the structures are 
determined with X-ray diffraction at a resolution of less than 2 Å and with a sequence 
longer than 40 residues. Structures with Cα or backbone coordinates only, or with more 
than one chain, or with any chain break, fragment, mutant or non-standard residue are 
excluded. To eliminate sequential or structural homology among the selected structures, 
their sequence identity and Root Mean Square Deviation (RMSD) are required to be 
below 30% and above 10 Å respectively. 

Each residue in a structure is considered as a node. Two nodes are linked together 
when the Euclidian distance between their Cα atoms is shorter than 8 Å. The calculation 
of the Euclidian distance between two atoms has been described in detail elsewhere [32]. 
For each structure, a corresponding residue network is constructed. 

2.2. Analyzing the topology of residue networks 

The topology of a residue network can be characterized with local and global parameters. 
Connectivity, which is often termed "degree", is one of the most important local 
parameters. The connectivity of residue r (Kr) is the number of neighbors linked to 
residue r. 

Clustering coefficient is another local parameter of a residue network. The clustering 
coefficient of residue r (Cr) reflects the probability that the neighbors of residue r are 
also neighbors of each other. In residue network, if residue r has Kr neighbors, the 
number of all possible links among these neighbors is Kr (Kr-1)/2. However, the actual 
links among these neighbors are counted and represented by "Ar". Then Cr is given as: 
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In network theory, closeness is a global measure for centrality.  The closeness of 
residue r (Or) to other residues in the residue network is defined as: 
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where N is the network size. D(r,s) is the shortest path between residue r and another 
residue s. V is the set of all residues in the network.  

Betweenness is another global centrality measure of a node within a network. Nodes 
that lie on many shortest paths between other nodes have higher betweenness than those 
that do not. The betweenness of residue r (Br) in the residue network is defined as: 
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where D (q,r,s) is number of shortest path between residue q and s pass through r, D(q,s) 
is all shortest paths between residue q and s. (N-1)(N-2) equals to the number of ordered 
pairs of residues not including r.  

For each residue in all the residue networks, the four topological parameters are 
computed. For each residue network, the average parameters are calculated and the 
connectivity distribution is analyzed. The diameter and average path length of each 
residue network are also computed. These parameters are further analyzed together with 
protein size and structural class. 

2.3. Deriving new amino acid indices 

For each of the 20 amino acid commonly found in proteins, its topological properties 
(connectivity, clustering coefficient, closeness and betweenness) are averaged over all 
the residue networks constructed above. A set of 20 values for each topological 
parameter makes the raw amino acid index. All the 4 newly derived, raw amino acid 
indices are then normalized with 

 xMOxRx =  (4) 

where Ox is the original value of the raw amino acid index and Mx is the mean of that 
index set. The set of normalized results Rx makes the new, relative amino acid index 
based on a topological property. 

2.4. Clustering new indices with existing indices  

Hierarchical cluster analysis is applied to explore the relationships between these 
network based new amino acid indices and the 494 published indices in the AAindex 
database [3]. This is done with the program Amino Acid Explorer [33], which is based 
on a method reported previously by our group [1, 2]. 

A similar analysis is done on the 4 new indices and 11 highly related indices, which 
are clustered into the same branch. A minimum spanning tree is also built from the 4 new 
indices and 67 other indices that contain any of the following strings "hydroph", "polar," 
"size," "volume," "charge," and "electr" in their description. 

2.5. Predicting surface residues with new and related indices  

Seven amino acid indices are used to predict protein surface residues on 3 data sets. The 
first data set consists of 640 representative proteins, from which the new indices are 
derived. The second data set has 25 representative proteins, randomly picked from data 
set 1. The third data set has 25 representative proteins also. However, they are selected 
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from newly released PDB structures, fulfilling the previously described requirements for 
data set 1. 

Surface residues are assigned based on their solvent accessible area at different 
cutoff values of 1, 10, 20, 50 and 100 Å2. The solvent accessible area is computed with 
the NACCESS program [34] using default parameters. 

The amino acid indices tested include the 4 new indices and three related indices. 
The new indices are Relative Connectivity (Rk), Relative Clustering Coefficient (Rc), 
Relative Closeness (Ro) and Relative Betweenness (Rb). The three related indices are 8 
Å contact number (N8) [6], Parker's hydrophilicity (Ph) and Levitt's index (Li) [8]. N8 
was clustered close together with the 4 network based indices and had good performance 
in surface residue prediction. Ph was derived from experiment data and related to surface 
residues. Both Ph and Li have been confirmed to be one of the best indices for B cell 
epitope prediction [10]. If an index correlates negatively to the surface possibility, it is 
multiplied by -1 when used in predicting surface residues.   

The prediction is completed with the classical sliding window method. In brief, a 
window slides from the N-terminal to C-terminal of the query protein sequence. The 
mean propensity value of the window is then assigned to the residue in the middle of the 
window. At the N- and C- termini, we use asymmetric windows to avoid omitting 
prediction examples. Different window sizes of 1, 3, 5, 7, and 9 are tested.  

Receiver Operating Characteristics (ROC) curves are constructed and visualized 
with the ROCR package [35]. The area under the curve (Aroc) is used to evaluate the 
performance of each prediction [36].  

3. Results 

3.1. Residue networks are small worlds 

All the residue networks constructed show typical small world features such as short 
average path length and high clustering coefficient. The connectivity distribution in 
residue network is normal rather than power-law (see Fig. 2) and the average path length 
scales up logarithmically with the network size.  

 
Fig 2. Connectivity distribution of sperm wale myoglobin. Residue network based on PDB structure 1A6M is 
shown as an example, which is in agreement with normality by Shapiro-Wilk test (P = 0.008). 
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While diameter and connectivity logarithmically scale up with residue network size, 
closeness, betweenness and clustering coefficient scale down logarithmically. The 640 
representative proteins are assigned to "all α", "all β", "α/β", "α+β" and "others" class 
according to the SCOP database [37]. All the network parameters studied above show no 
significant differences among different structural classes. 

3.2. Topologically derived new amino acid indices 

Four new amino acid indices termed Relative Connectivity (Rk), Relative Clustering 
Coefficient (Rc), Relative Closeness (Ro) and Relative Betweenness (Rb) are derived 
from topological parameters of the residue networks and listed in Table 1. 
 

Table 1. Four new amino acid indices based on residue network topology. 

 A C D E F G H I K L M N P Q R S T V W Y 

Rk 1.05 1.17 0.88 0.85 1.07 0.99 0.99 1.11 0.88 1.07 1.04 0.93 0.92 0.93 0.94 0.96 0.99 1.12 1.05 1.05 

Rc 0.99 0.89 1.11 1.13 0.92 1.08 1.00 0.89 1.10 0.92 0.95 1.07 1.01 1.06 1.04 1.05 1.01 0.90 0.93 0.94 

Ro 1.00 1.13 0.95 0.95 1.03 0.99 1.01 1.04 0.96 1.02 1.02 0.96 0.96 0.97 0.98 0.98 0.99 1.04 1.01 1.02 

Rb 0.96 1.60 0.63 0.61 1.31 0.77 1.03 1.43 0.61 1.30 1.24 0.72 0.83 0.73 0.82 0.80 0.90 1.35 1.20 1.16 

3.3. New indices are related to hydrophobicity and β propensity  

After hierarchical clustering, all the 4 new indices are closely clustered together and 
related to the hydrophobicity and β propensity indices. As shown in Fig. 3, connectivity 
and clustering coefficient are both highly related to β propensity, and the betweenness 
measure is highly related to hydrophobicity. Closeness directly links to betweenness, 
through which the 4 new indices are joined together. 
 

 
Fig 3. Minimum spanning tree built from the 4 new indices and 11 highly related indices. The new indices are 
displayed in circles. C1: betweenness; C2: closeness; C3: connectivity; C4: clustering coefficient. The 
rectangles stand for highly related indices in AAindex [3] labeled with corresponding serial number. 242: 
Average gain in surrounding hydrophobicity; 279: Weights for beta-sheet at the window position of 2; 455: 
Beta-sheet propensity derived from designed sequences. 

The minimum spanning tree is also built from the 4 new indices and 67 published 
indices that contain any of the following string "hydroph", "polar," "size," "volume," 
"charge," and "electr" in their description. The close relation between the network-based 
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4 new indices and hydrophobicity or hydrophilicity is confirmed; in contrast, their 
relationships to amino acid size and charge are weak (data not shown). 

3.4. Performance in predicting surface residues with new indices 

Seven indices have been applied to predict surface residues on three data sets with five 
different sliding window sizes and surface cutoffs. Among them, relative connectivity 
(Rk) always performs best. Relative closeness (Ro) and relative betweenness (Rb) are 
comparable to the 8 Å contact number index (N8) given by Ooi et al [6]. Though relative 
clustering coefficient (Rc) does not perform as well as the other 3 new indices, it is still 
better than Parker's hydrophilicity (Ph) and Levitt's index (Li) [8] (see Fig. 4).  
 

 
Fig 4. ROC curves for seven indices. The curves above are constructed from predictions on Data set 3 with 
sliding window size 1 and surface cutoff 100 Å2. In this condition, the Aroc of Rk is about 0.75; its accuracy, 
sensitivity and specificity can reach 72%, 74% and 72% respectively. For a random prediction, Aroc is 0.5; for a 
perfect method, Aroc is 1; Aroc value higher than 0.7 is usually considered as a useful prediction performance. 

 
When the size of sliding window decreases, all indices except Li perform better 

(result not shown). When the surface cutoff increases, 4 new indices tend to perform 
better; but the performance of N8, Ph and Li tend to decrease (see Table 2). 

 

Table 2. Aroc from predictions on data set 3 with window size 1 and various 
surface cutoffs (1, 10, 20, 50 and 100 Å2) 

 SC1 SC10 SC20 SC50 SC100 
Rk 0.734 0.734 0.735 0.736 0.753 
Rc 0.703 0.703 0.700 0.693 0.705 
Ro 0.720 0.720 0.722 0.721 0.727 
Rb 0.710 0.713 0.713 0.708 0.722 
N8 0.721 0.716 0.717 0.715 0.711 
Ph 0.683 0.677 0.671 0.664 0.665 
Li 0.658 0.635 0.628 0.600 0.557 
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4. Discussion 

Amino acid indices are useful tools in bioinformatics. Our group has been building and 
maintaining a database of amino acid indices for almost 20 years [1-3]. However, most 
published amino acid indices, if not all, are based on physicochemical properties of 
amino acids, such as size, charge, polarity and hydrophobicity. Proteins can be 
considered as networks of amino acid residues and their interactions [17-29]. In this 
study, we confirmed the small world properties of such networks and built 4 new indices 
based on residue network topological parameters.  

A very recent paper reported a very good agreement between connectivity and 
amino acid hydrophobicity [29]. Our results from hierarchical cluster analysis indicated 
that the 4 new indices do relate to hydrophobicity, but β propensity as well. As several 
topological parameters of residue networks have shown useful relationships to protein 
folding [17-19], dynamics [23], stability [25], functional sites and residues [21, 22], 
network topology based indices might be helpful for exploring protein structure and 
function. 

Compared with related amino acid indices such as Ph and Li, the new indices show 
better performance in protein surface residue prediction. The problem of surface residue 
prediction is related to that of B cell epitope prediction, due to the requirement for 
epitopes to be surface accessible to interact with an antibody. Ph and Li have been 
proved to be the best two indices so far in linear B cell epitope prediction [8-10]. 
However, even the performance of Ph and Li are unsatisfactory [9], indicating that better 
methods or new amino acid indices are needed for B cell epitope prediction. Since the 
network topology based indices have better performance than Ph and Li in protein 
surface residue prediction, they might also perform better in B cell epitope prediction. 
This will be an area of future study for us. 

In conclusion, it indicates that network topology based amino acid indices can be 
useful complements to the existing physicochemical property based amino acid indices. 
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