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We demonstrate an approach to automatically generating kinetic models of metabolic
networks. In a first step, the metabolic network is characterised by its stoichiometric
structure. Then to each reaction a kinetic equation is associated describing the metabolic
flux. For the kinetics we use a formula that is universally applicable to reactions with
arbitrary numbers of substrates and products. Last, the kinetics of the reactions are
assigned parameters. The resulting model in SBML format can be fed into standard
simulation tools. The approach is applied to the sulphur-glutathione-pathway in Saccha-
romyces cerevisiae.

Keywords: Metabolic networks; systems biology; parameter estimation; data integration;
sulphur-glutathione pathway; Bayesian data analysis.

1. Introduction

Studying the regulation of metabolic reaction networks is an important task in
systems biology and functional genomics. A complete understanding of metabolic
regulation requires quantitative information about kinetic laws and the concentra-
tions of metabolites and enzymes. This quantitative knowledge in combination with
the known network of metabolic pathways allows the construction of mathemat-
ical models that describe the dynamic changes in metabolite concentrations over
time. The models are high-dimensional systems of ordinary, non-linear differential
equations. The main problems of the approach are the setup of the equations that
describe the metabolic pathways in form of kinetic rate equations and the identi-
fication of the system parameters. To solve these problems, a variety of pathway
modeling tools such as Copasi [6], CellDesigner [15], and others have been devel-
oped which simplify model construction and analysis. Most of these tools are able to
store and exchange models in the Systems Biology Markup Language (SBML, [21])
and to fit parameters for a given set of experimental data. A long-term goal is
the construction of genome-scale metabolic models. For various model organisms
stoichiometric genome-scale models have been constructed. They have been shown
to be useful for the investigation of steady state fluxes in wild type cells and in
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mutants. Large-scale dynamic models would be very useful to predict the effect of
transient perturbations, for instance by gene regulation, or to apply powerful anal-
ysis tools such as metabolic control analysis (MCA), but is still hampered by a lack
of systematically retrieved data. Facing the need of a more systematic construction
and parameterisation of metabolic models, we present an approach to (i) automati-
cally construct an SBML model from a list of reactions, (ii) automatically associate
kinetic expressions to all reactions and (iii) automatically assign the parameter val-
ues based on available information and on statistically based estimates for missing
information.

2. Methods

We have set up a workflow to automatically generate models of metabolic networks
from a given set of reactions; it consists of the following steps:

(i) set up a structural model
(ii) assign a kinetic law to each reaction
(iii) collect kinetic and thermodynamic data
(iv) determine a feasible set of parameters
(v) construct the kinetic model in SBML format

The parameter estimation is based on Bayes statistics; the result is a posterior
distribution of parameter sets that reflects the most probable values and their re-
maining uncertainties. This result can serve as a prior in further modelling steps.
We shall now describe the single steps of the workflow; a more detailed description
of it is given in [4].

Structural model

We base our models on knowledge contained in the Kyoto Encyclopedia of Genes
and Genomes (KEGG) [16]. KEGG is a set of databases that constitute a computer
representation of biological knowledge at different levels, i.e. pathways, reactions,
enzymes, compounds and genes. These levels are interconnected.
Our metabolic networks are built from chemical reactions stored in KEGG. We start
with a set of reactions; in practice we map the reactions to their identifiers in KEGG.
With these reaction identifiers we retrieve information on the relevant compounds
(in the form of KEGG compound indentifiers) and enzymes (EC numbers). Each
reaction in the model has a reaction identifier, an enzyme identifier and a metabolite
identifier associated with it. In the resulting SBML file, each element is described
by a MIRIAM-compliant annotation [8, 18], which points to the respective KEGG
identifer.

Kinetic laws

In a next step each reaction is assigned a kinetic expression. We use the conve-
nience kinetics, a rate law that assumes a random-order enzyme mechanism and is
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applicable to reactions with any number of substrates and products [9]:
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The index variables a, i, s and p run over the sets of activators, inhibitors, sub-
strates and products of the reaction, respectively. The concentration of the enzyme
catalysing the reaction is denoted by E. The variables kcat

+ and kcat
− stand for the

turnover rates of the enzyme in the forward (+) and the backward (−) direction,
c̄s = cs/kM

s and c̄p = cp/kM
p are the ratios of the substrate and product concentra-

tions with their kM values, KI
i denotes the inhibition constant of inhibitor i and

KA
a the activation constant of activator a. Finally, ns and np are the stoichiometric

coefficients of substrate s and product p, respectively.
This formula is directly applicable once the stoichiometric structure of the model -
i.e., the substrates and products of all reactions - and the regulatory structure - i.e.
activators and inhibitors of an enzyme - are known.
The parameters that enter this kinetic expression are a kM value for each reactant,
a kA value for each activator of the enzyme, a kI value for each inhibitor and two
turnover rates kcat

± for the enzyme. The total number of kinetic parameters entering
the formula is Ns +Np +Ni +Na +2 as indicated in Table 1. In order to ensure ther-
modynamic consistency of the parameter set, we actually regard the turnover rates
kcat
± as dependent quantities and express them by two different kinds of parameters,

one kV value for each reaction and one kG value for each metabolite [9].

Table 1. Types of kinetic parameters
and their numbers entering the kinetic
formula Eq.(1).

Parameter type number required

kM Ns + Np

kI Ni

kA Na

kcat 2

Note: Ns: number of substrates, Np:
number of products, Ni: number of in-
hibitors, Na: number of activators of a
reaction.

Data collection

We use two types of data available. First, we search literature and databases for ther-
modynamic, kinetic, metabolomic and proteomic data. The thermodynamic data
include Gibbs free energies of formation [2, 5, 11], and equilibrium constants [19].
The kinetic data comprise kM values [14, 17], kI values [14, 17], ic50 values [17]



September 23, 2007 14:26 WSPC - Proceedings Trim Size: 9.75in x 6.5in ws-gi-975x65˙2e˙master

218 S. Borger et al.

and turnover rates kcat [14, 17]. Metabolomic data sources are metabolite concen-
trations [1]. Protein concentrations come from [23].

Fig. 1. An automatically generated metabolic network set up starting with the KEGG reac-
tion identifiers R00529, R00509, R02021, R00858, R01287, R00192, R00380, R00177, R00946, R01290,
R01001, R03217, R00894, R00497, R00494, R00899.

Furthermore, we use predicted kM values based on a statistical linear model [3]. The
idea behind is that there are different statistical factors that explain the logarithm
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of a kM value, ln(kM ). The first of the three factors is the substrate contribu-
tion µ determined by the substrate’s chemical properties. Secondly, there is the
substrate-enzyme contribution α reflecting evolutionary conservation across organ-
isms. Finally, there is the substrate-organism contribution β stemming from the
adjustment of kM values to typical concentrations of the respective metabolite in
a certain organism. The sum will be the value of the logarithm of the kM value:
ln(kM ) = µ + α + β.
We map all the collected experimental data to one of the entities reaction, enzyme
and compound from KEGG, or to a combination of them, according to the type of
data. The entities are represented by their respective KEGG identifiers. With the
KEGG identifiers the data are written into a database. By searching the database
for the KEGG identifiers present in the model, data can be retrieved for the kinetic
expression Eq.(1) of each reaction.
The data for the model are searched in the following way: first we look for data
that are identified by a reaction identifier like equilibrium constants keq or Michaelis
Menten constants kM . If for a certain reaction no such data are found by the reaction
identifier, we search by the enzyme identifier that is associated with the reaction.
An equilibrium constant is already completely determined by a reaction identifier,
for a kM value the metabolite identifier also has to be extracted. In the next step,
data that require either only a metabolite identfier, like concentrations and Gibbs
free energies of formation, are searched by the the respective identifier.

Table 2. Prior distributions.

quantity no. of data 5% quantile median 95% quantile

thermodynamic
equilibrium constant 2088 0.000001 0.119 162.0
Gibbs energy of formation (kJ/mol) 9804 -1522.6 -331.0 324.3

kinetic
kM (mM) 90240 0.00098 0.14 20
kI (mM) 21092 0.000003 0.016 14.0
ic50 (mM) 8324 0.000002 0.002 0.67
kcat (mM) 22587 0.008 6.0 1100

metabolomic
metabolite concentration (mM) 225 0.0018 0.122 4.9

proteomic
protein abundance (molecules/cell) 10141 279 2939 33502

Note: The parameter types used for data collection for the model. Shown are the number of
available data and properties of their distributions.
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Distribution of feasible parameter sets

The collected experimental data cannot be directly written into the kinetics of
the reactions of the metabolic network. The reasons are: (i) experimental data are
noisy because of measurement errors. Sources of noise are biological variability,
measurement errors, measurement in vitro or in other species; (ii) we may find
different contradicting values for the same parameter; (iii) due to thermodynamical
constraints [9] (iv) many parameters will not be available and therefore remain
undetermined.
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Fig. 2. Prior distributions of logarithms of different data types used in the Bayesian parameter
estimation approach.

We thus regard the information gained for the parameters as uncertain data and take
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a Bayesian approach to find a complete set of parameters that is thermodynamically
consistent [10]. From a statistics over all collected data of certain parameter types,
we derive prior distributions for these parameter types as indicated in Table 2. The
distributions of the logarithmic parameters are also shown in Fig. 2. For instance,
a log-normal distribution fitted to kM values in the database Brenda [14] is used
as a prior for each kM value in a model. The parameter values we retrieve for our
specific model are used as data that have to be explained by the parameter set
of the model; this determines a likelihood function. The prior and the likelihood
function combined yield a posterior distribution of the model parameters given the
found data points for the model [10].
By random sampling from the posterior distribution we can find distributions of
the behaviour of the model.

Kinetic model

Once the entities of the metabolic network, i.e. reactions, metabolites and enzymes,
are assigned their parameters, the result is written to an output file in SBML format.
The annotations in the SMBL file accord with the MIRIAM standard [8, 18].

Table 3. Statistics of data retrieved for model.

quantity no. of data thereof for Sacc. Cerev. no. of data retrieved for model

thermodynamic
equilibrium constant 2088 2088 for 2 of 16 reactions
Gibbs energy of formation 9696 9696 for 22 of 36 metabolites

kinetic
kM 90240 2475 for 34 of 36 substrate-reaction-pairs
kI 21092 158 2
kcat
± 22587 144 3 of 74 metabolite-enzyme-pairs

metabolomic
metabolite concentration 225 30 for 7 of 36 metabolites

proteomic
protein abundance 10141 10141 for 13 of 15 enzymes

Note: The number of data of different parameter types in the database, how many of them apply to Saccha-
romyces cerevisiae and how many have been extracted for the model (not only kinetic parameters).

3. Results

As a test case, we applied the described automatic model generation to the sulphur
assimilation and the glutathione biosynthesis pathways in the yeast Saccharomyces
cerevisiae. These pathways play an important role in the buffering of arsenic in order
to avoid toxic effects: the cell increases the uptake of sulphur, leading to a raised
glutathione level. Glutathione, having a high reduction potential, forms a complex
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with arsenic and the complex then is disposed in the vacuoles. The expression of
the enzymes involved in these pathways is enhanced upon exposure to arsenic [12].
From a manually sketched metabolic network of the sulphur assimilation and the
glutathione biosynthesis pathways, an enhanced version of the model in [12], we
looked up the KEGG reaction identifiers. With these identifiers, information about
the reactants and enzymes is fetched from the KEGG database. The result is the
metabolic network shown in Fig. 1.
In the data retrieval step we could find 131 entries; some of them refer to the same
parameter of the model and are averaged. After averaging and balancing we are left
with 49 parameters.
The prior distributions of the logarithms of the parameters are shown in Fig. 2. In
some cases they can be well described by a normal distributions (i.e. the parameter
itself is log-normal distributed). Especially where the number of collected data (see.
Table 2) are large the normal distribution is a good description of the respective
actual distribution. This is especially the case for the kM , kcat, ki values and the
Gibbs formation enthalpies.
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Fig. 3. Michaelis-Menten constants in the sulphur-glutathione model. Left: kM values retrieved
from the database Brenda [14]. Some of the values are missing (grey diamonds with black border).
Right: balanced, complete set of kM values for the model.

After averaging we are left with 49 experimental values useful for assigning values
to the kinetic parameters of the model (s. Table 3). The kinetic parameters of
the model are determined by 127 independent kinetic and thermodynamic values.
Those values that cannot be extracted from the database are mainly determined
by the mean values of their prior distributions (seeTable 2) and then undergo the
thermodynamical adjustment and Bayesian procedure. In Fig. 3 we show as an
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example the kM values of the model. To the left we display the number of extracted
kM values from the database (missing data are indicated by black borders of the
diamonds) and their numerical values. To the right we show the model parameters
after the adjustment to thermodynamical constraints and the replacement of missing
values in the course of the Bayesian procedure. High numerical values tend to stay
high, missing ones are replaced by “average” numerical values.
When simulated with initial concentration values of the metabolites in the range of
0.1 to 10 mM, and holding the concentrations of the cofactors constant, the model
yields concentrations in the range of 1µM to 1mM. The fluxes obtain values in the
range of 1nM/s to 1µM/s.

4. Discussion

We have presented a workflow to automatically generate metabolic models. We
begin with a set of reactions, set up the structure of the model, search data that
determine the kinetic parameters of the model as well as concentrations of enzymes
and metabolites. These data cannot simply be written into the kinetic expression
of Eq.(1), but have to be averaged and adjusted to thermodynamic constraints [9].
The data are taken as hints that determine distributions of the model parameters:
In a Bayesian approach we draw values from a posterior distribution of the model
parameters given the values extracted from the database [10]. In further analyses
we can thus assess the distribution of models and their dynamic behaviours.
We have applied this approach to a medium-scale model, the sulphur assimilation
and glutathione biosynthesis pathways. We fed an enhanced version of the model
in [12] into the workflow. The outcome is a parametrised model in the SBML format
with annotations according to the MIRIAM standard. The model can be fed into
simulation tools for further analysis of its dynamical properties, for instance for
comparison with metabolite time courses.
The parameter balancing, i.e. the adjusting to thermodynamical constraints and
combining prior and likelihood, results in a joint posterior distribution of all pa-
rameters; in particular, it ensures that we obtain a mean value for each parameter,
even if no data about this parameter are available. The posterior distribution of
an “unknown” parameter will reflect two sources of knowledge: (i) its prior (e.g.,
the posterior of an unknown kI value is just its prior, that is, the distribution of
all known kI values); (ii) its relationships with other, possibly known, parameters
(e.g., as vmax = Ekcat, experimental data of E and vmax will affect the posterior
of kcat).
The posterior parameter distribution can be used as a prior for subsequent modelling
in which new data, e.g., metabolic timecourses, are incorporated (see [10]). Hence,
our approach takes the form of an iterative learning tool.
The fact that we could not find data for all the parameters of the model is partly
due to the simple lack of available data. Another reason is incomplete mapping of
reaction names and metabolite names to the appropriate KEGG entities. Further-
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more, also in KEGG there are cases that two entities appear to the knowledgeable
user as the same, but not to computer tools. Hence, a standard for names of bio-
logical entities is desirable. It would greatly improve approaches like the presented
automated modelling approach and help in paving the way towards genome scale
models.
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